《四边形》教案

时间:2024-07-12 19:01:48
《四边形》教案

《四边形》教案

作为一无名无私奉献的教育工作者,就有可能用到教案,借助教案可以让教学工作更科学化。我们应该怎么写教案呢?以下是小编收集整理的《四边形》教案,欢迎阅读,希望大家能够喜欢。

《四边形》教案1

一、学生起点分析:

学生的知识技能基础:学生已经认识了生活中的轴对称现象,掌握了轴对称图形的概念及其性质,因此在学习中心对称图形时可以进行比较。另外,学生还掌握了一些常见中心对称图形的性质,例如平行四边形、矩形、圆形、正方形等,所以在研究这些图形的中心对称性时是有帮助的。

学生的活动经验基础:生活中存在大量的实例,可以作为这一节课的活动基础。

二、学习任务分析:

基于已有了研究轴对称图形的基础以及旋转知识,本节课教学的重点在于理解中心对称图形的定义及其性质,难点在于理解中心对称图形的定义,会判断哪些图形是中心对称图形,并且还要发展学生的应用意识,会寻找生活中的中心对称图形,会分析各种图案,标志是中心对称图形,还是轴对称图形。

因此本节课的教学目标是:

(1)经历观察发现中心对称图形的有关概念以及性质的过程,理解中心对称图形的概念和性质。

(2)会判断一些常见图形是否是中心对称图形。

(3)会判断生活中的一些图案,图标是否具有中心对称性。

(4)学会运用数学眼光分析身边事物的能力。

(5)培养审美能力。

教学重点:理解中心对称图形的定义及其性质

教学难点:理解中心对称图形的定义,会判断哪些图形是中心对称图形

三、教学过程设计:

第一环节:学生课前收集一些图案,图标等。

以4人合作小组为单位,开展收集图案活动:

(1)美丽图案

(2)各车的标志

(3)商标

活动方式:提前准备

活动目的:通过以上活动,培养学生运用数学眼光分析周围世界。

第二环节:情境引入

在学生收集到的图案中,首先请学生先选择出是轴对称图形的图案,与学生共同回顾轴对称图形的知识。然后,教师挑出具有另一种对称性的图案(中心对称的),引入课题。

第三环节:学习新知

1.探究活动:平行四边形ABCD

运用电脑演示下列过程:连结对角线AC,BD交点为O,确定原来平行四边形的位置,然后使它绕着点O旋转180°。

2.提出问题:(1)此时的平行四边形是否与原来的图形重合?

(2)旋转中心,旋转角各是多少?

(3)为什么旋转后的平行四边形会与原平行四边形重合?

3.定义概念:

像平行四边形这样,一个图形绕着一个固定点旋转180°后能与原图形重合的图形叫中心对称图形,这个固定点叫对称中心。

观察与思考:设点是某个中心对称图形上的一点,绕对称中心0旋转180°后,它变成了点B,点A与点B就是一对对应点,且OA=OB

结论:中心对称图形上的每一对对应点所连接的线段都被对称中心平分。做一做:

(1)平行四边形是中心对称图形吗?如果是,请找出它的对称中心,并验证作的结论。因此还可以验证平行四边形的哪些性质?

(2)线段是中心对称图形吗?对称中心是什么?

(3)你还能找到哪些常见的几何图形是中心对称图形?它们的对称中心是什么?

活动方式:1)四人小组活动,合作交流:

2)全班讨论

活动目的:尽可能多地找出常见的图形进行知识归纳,其中包括矩形,菱形,正方形,正三角形,圆等。

议一议:1)下面的扑克牌中,哪些牌的牌面是中心对称图形吗?

红桃2 黑桃9 方片J 黑桃8 梅花3

答:黑桃K,方片9

2)再举出生活中的一些中心对称图形

第四环节:练习提高:

随堂练习1,2

第四环节:课堂小结

1)这节课我们认识了中心对称图形

2)像线段、平行四边形、圆、偶数边的正多边形就是中心对称图形

3)会辨认生活中哪些图案是中心对称图形

第五环节:作业布置

习题4.12 3

四、教学反思

中心对称图形比轴对称图形难理解和为学生所接受,因此应该充分运用多媒体动画辅助教学,帮助学生理解中心对称图形的概念和性质,并能认识到生活中哪些图案是中心对称图形为了发展学生兴趣,可以引导学生进行图案设计,把所学知识应用于实际,提升学习水平和能力。

《四边形》教案2

一、学习目标

1、经历探索多项式与多项式相乘的运算法则的过程,发展有条理的思考及语言表达能力。

2、 会进行简单的多项式与多项式的乘法运算

二、学习过程

(一)自学导航

1、创设情境

某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米,用两种方法表示这块林区现在的面积。

这块林区现在的长为 米,宽为 米。因而面积为________米2。

还可以把这块林地分为四小块,它们的面积分别为 米2, 米2,_______米2, 米2。故这块地的面积为 。

由于这两个算式表示的都是同一块地的面积,则有 =

如果把(m+n)看作一个整体,你还能用别的方法得到这个等式吗?

2、概括:

多项式乘以多项式的法则:

3、计算

(1) (2)

4、练一练

(1)

(二)合作攻关

1、某酒店的厨房进行改造,在厨房的中间设计一个准备台,要求四面的过道宽都为x米,已知厨房的长宽分别为8米和5米,用代数式表示该厨房过道的总面积。

2、解方程

(三)达标训练

1、填空题:

(1) = =

(2) = 。

2、计算

(1) (2)

(3) (4)

(四)提升

1、怎样进行多项式与多项式的乘法运算?

2、若 的乘积中不含 和 项,则a= b=

应用题

第三十五讲 应用题

在本讲中将介绍各类应用题的解法与技巧.

当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点.

应用性问题能引导学生关心生活、关心社会,使学生充分到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.

……此处隐藏29709个字……各组派代表发言,(实物在黑板上移动展示)说说分法,并说明这样分的理由。

(1)按角分:长方形、正方形一类(四个角都是直角);

菱形、平行四边形、梯形一类(没有直角)。

(2)按边分:长方形、正方形、菱形、平行四边形一类(对边相等、正方形的四条边都相等);

梯形一类(对边不相等)。

(3)长方形、平行四边形一类(对边相等);

正方形、菱形一类(四条边相等);

梯形一类(四条边都不相等)。

4.小结:师:你们分的好极了,都非常有自己的想法。那么我们再来确认一下,到底什么样的图形是四边形?

(五)画四边形(书第36页做一做2)

师:我们已经会认四边形,还会根据它们的特点进行分类,接下来我们来画一画四边形,你觉得怎样才能又标准又快的画出这些四边形呢?需要老师给你们提供什么工具吗?(尺、格子图)请你们把这6个四边形都画一画,一边画一边想一想,这些四边形有什么不同。

实物投影展示,讲评。

你觉得这些四边形有什么不同的地方吗?

(长方形、正方形有四个直角,长方形的对边一样长,正方形的四条边都一样长;梯形有两个角是直角,但它的四条边都不一样长;菱形的四条边都一样长,但它的角不是直角;平行四边形的对边一样长,但它的角也不是直角;还有一个四边形它的四条边都不一样长,四个角也都不是直角。)

(六)拼四边形

师:太棒了,你们把这些四边形看的非常透彻了。信封里有一些四边形,我们来看看有些什么,请你们四人合作,选几个拼成一个四边形(信封材料准备)。

信封里的四边形:

交流、展示。

还有不同拼法吗?

(七)课堂总结

师:同学们的动手能力太强了,老师佩服你们,在这节课里,你们认识了什么?它是什么样的?还知道了它的哪些知识?四边形还有很多知识,我们以后再学。

《四边形》教案15

教学目的:

1、让学生知道平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积。

2、通过操作、观察与比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力。

3、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

4、培养学生自主学习的能力。

教学重点:掌握平行四边形面积公式。

教学难点:平行四边形面积公式的推导过程。

教具、学具准备:1、多媒体计算机及课件;2、投影仪;3、硬纸板做成的可拉动的长方形框架;4、每个学生5张平行四边形硬纸片及剪刀一把。

教学过程():

一、复习导入:

1、我们认识的平面几何图形有哪些呢?(微机出示,图形略)

2、在这几个图形中你们会求哪几个的面积呢?(微机出示长方形和正方形的面积公式)

3、大家想不想知道其他几个图形的面积怎么求呢?我们这个单元就来学习“多边形面积的计算”。

二、质疑引新:

1、老师知道同学们都很喜欢流氓兔,今天流氓兔遇到了一个难题,我们一起来帮它解决好不好?

2、微机显示动画故事:有一天,流氓兔在跑步的时候,遇到了一个长方形框架,它不小心踹了一脚,把长方形变成了平行四边形,流氓兔很奇怪:形状改变了,面积改变了吗?

3、演示教具:将硬纸板做成的长方形框架,拉动其一角,变为平行四边形。

4、解决这个问题最好的办法就是将两个图形的面积都求出来进行比较,长方形的面积我们会求了,平行四边形的面积要怎么求呢?这节可我们就一起来学习平行四边形面积的计算。(板书课题:平行四边形面积的计算)

三、引导探求:

(一)、复习铺垫:

1、什么图形是平行四边形呢?

2、拿出一个准备好的平行四边形,找找它的底和高,并把高画下来,比比看谁画得多。

3、微机显示并小结:平行四边形可以作无数条高,以不同的边为底对应的高是不同的。

(二)、推导公式:

1、小小魔术师:我们现在来做一个变一变的小游戏(微机显示一个不规则图形),我们可以直接用所学过的求面积公式来求它的面积吗?

2、能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

3、能不能用同样的方法把一个平行四边形转化成长方形呢?请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。

4、学生实验操作,教师巡视指导。

5、学生交流实验情况:

⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!(用投影仪演示剪拼过程)

⑵、有没有不同的剪拼方法?(继续请同学演示)。

⑶、微机演示各种转化方法。

6、归纳总结规律:

沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。并引导学生形成以下概念:

⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

⑶、剪样成的图形面积怎样计算?得出:

因为:平行四边形的面积=长方形的面积=长×宽=底×高

所以:平行四边形的面积=底×高

(板书平行四边形面积推导过程)

7、文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作".",也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

8、让学生闭上眼睛,在轻柔的音乐中回忆平行四边形面积计算的推导过程。

四、巩固练习:

1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪几个条件?(底和高,强调高是底边上的高)

2、练习:

(1)、(微机显示例一)求平行四边形的面积

(2)、判断题(微机显示,强调高是底边上的高)

(3)、比较等底等高的平行四边形面积的大小(用求面积的公式计算、比较,得出结论:等底等高的平行四边形面积相等)

(4)、思考题:用求面积的公式解决流氓兔的难题(微机演示,得出结论:原长方形与改变后的平行四边形比较,长方形的长等于平行四边形的底,长方形的宽不等于平行四边形的高,所以二者的面积不相等)。

五、问答总结:

1、通过这节课的学习,你学到了哪些知识?

2、平行四边形面积的计算公式是什么?

3、平行四边形面积公式是如何推导得出的?

六、课后作业:P67 1、2、3、5 《指导丛书》练习十六 1

《《四边形》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式